Skip to main content
  • Deutsch
  • English
Dimajix Staging
Menu
  • Expertise
    • Architektur für Big Data und Data Science
    • Apache Spark & Hadoop
    • Data Science & Machine Learning
  • Akademie
    • Offene Trainings
    • Big Data
    • Hadoop & Spark
    • Data Engineering
    • Data Science
  • Blog
  • Über dimajix
  • Kontakt
    Close Search
    02-test Allgemein

    02-test

    I am text block. Click edit button to change this text. Lorem ipsum dolor sit…
    KupferschmidtAdmin
    KupferschmidtAdmin23. Dezember 2025
    Big Data Engineering — Declarative Data Flows Allgemein

    Big Data Engineering — Declarative Data Flows

    This is part 3 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin22. Oktober 2020
    Big Data Engineering — Apache Spark Big DataPySparkSpark

    Big Data Engineering — Apache Spark

    This is part 2 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin17. Oktober 2020
    Big Data Engineering — Best Practices Big DataSpark

    Big Data Engineering — Best Practices

    This is part 1 of a series on data engineering in a big data environment.…
    KupferschmidtAdmin
    KupferschmidtAdmin16. Oktober 2020
    Running Jupyter with Spark in Docker

    Running Jupyter with Spark in Docker

    most attendees of dimajix Spark workshops seem to like the hands-on approach I am offering…
    KupferschmidtAdmin
    KupferschmidtAdmin2. Oktober 2017
    Jupyter Notebooks with PySpark in AWS

    Jupyter Notebooks with PySpark in AWS

    Amazon Elastic MapReduce (EMR) is something wonderful if you need compute capacity on demand. I…
    KupferschmidtAdmin
    KupferschmidtAdmin22. Mai 2017
    Running Spark and Hadoop with S3

    Running Spark and Hadoop with S3

    Traditionally HDFS was the primary storage for Hadoop (and therefore also for Apache Spark). Naturally…
    KupferschmidtAdmin
    KupferschmidtAdmin5. Mai 2017
    Running PySpark on Anaconda in PyCharm

    Running PySpark on Anaconda in PyCharm

    Working with PySpark Currently Apache Spark with its bindings PySpark and SparkR is the processing…
    KupferschmidtAdmin
    KupferschmidtAdmin15. April 2017
    Building Druid for Cloudera 5.4.x

    Building Druid for Cloudera 5.4.x

    So the other day I wanted to investigate into using Druid as a reporting backend…
    dominik_adm1n
    dominik_adm1n23. März 2016

    Suche

    Kategorien

    • Allgemein
    • Big Data
    • PySpark
    • Spark

    Archive

    • Dezember 2025
    • Oktober 2020
    Wir sind für Sie da. Kontakt

    Kontakt

    dimajix
    Dr. Kaya Kupferschmidt
    Freiherr-vom-Stein Straße 3
    60323 Frankfurt

    Tel: 069-71588909
    Fax: 069-71588910
    E-Mail: info@dimajix.de

    Unsere Dienstleistungen

    • Beratung
    • Data Analytics
    • Planung
    • Umsetzung
    Weitere Informationen zur IT-Haftpflicht von dimajix, Frankfurt

    Neueste Beiträge

    • 02-test
    • Big Data Engineering — Declarative Data Flows
    • Big Data Engineering — Apache Spark
    • Big Data Engineering — Best Practices
    • Running Jupyter with Spark in Docker

    © 2026 Dimajix Staging. Design by rocket.works.   Impressum | Datenschutz

    • linkedin
    • github
    • medium
    • phone
    • email
    Close Menu
    • Expertise
      • Architektur für Big Data und Data Science
      • Apache Spark & Hadoop
      • Data Science & Machine Learning
    • Akademie
      • Offene Trainings
      • Big Data
      • Hadoop & Spark
      • Data Engineering
      • Data Science
    • Blog
    • Über dimajix
    • Kontakt
    • Deutsch
    • English